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palladium species to the olefin, followed by a palladium hydride 
rearrangement as suggested below (eq 4). 

The formation of 7r-allylpalladium compounds in these re­
actions is at first surprising in view of previous reports that 
vinylboronic acids and palladium acetate, as well as vinyl ha-
lides and palladium catalysts, react with olefins in the presence 
of organic bases to give 1,3-dienes.7 However, it has been 
suggested previously that 7r-allylpalladium compounds may 
be involved in these reactions.7 Indeed, we have observed that 
7r-allylpalladium compounds possessing neighboring electron 
withdrawing groups like those generated in our reactions 
readily react with bases to give 1,3-dienes (eq 5). We are 
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base 
C6H3CH=CHCH=CHCO2C2H5 (5) 

presently examining this approach to unsymmetrical 1,3-dienes 
from vinylmercurials, as well as the possibility that other 
x-allyl transition metal complexes may be prepared in this 
same manner. 
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Alkylation of Polyguanylie Acid at the 2-Amino Group 
and Phosphate by the Potent Mutagen (±)-7/3,8a-Dihy-
droxy-9(8,10/8-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene 

Sir: 

We recently described the stereoselective synthesis of 
(±)-7/3,8a-dihydroxy-9/3,10/3-epoxy-7,8,9,10-tetrahydroben-
zo[a]pyrene (1) and established that anchimeric assistance 
by the benzylic 7-hydroxy group greatly enhances its reactivity 
toward nucleophiles1'2 when compared to the isomeric 
9a,10a-epoxide (2).3,4 Both diol expoxides (1 and 2) are 
formed on metabolism of the environmental carcinogen ben-
zo[a]pyrene (BP) via oxidation of the 7,8-dihydrodiol.5 The 
remarkably high mutagenicity of 1 and 2 toward bacterial and 
mammalian cells,6 the indications that 1 and 2 are responsible 
for most of the binding of metabolities of BP to DNA,3 '7 and 
the high carcinogenicity of benzo[a]pyrene 7,8-oxide8 (pre­
cursor of 1 and 2) suggest 1 and 2 as ultimate carcinogens from 
BP. Since the guanine base (3, R = H) in DNA is generally 
the best nucleophile toward alkylating agents,9 we have es­
tablished the structures of the products formed when the highly 
reactive 1 (/1/2 ~ 30 s at pH 7, 37 0 C; solvolysis to tetraols by 
cis and trans addition of water at C-IO)510 covalently binds 
to polyguanylie acid (poly G). 

In a typical binding experiment, tritiated 1 (0.4 mg/ml)5 

was added to a solution of poly G (1.7 mg/ml) in 50% aqueous 
acetone at 37 0 C, Tetraols resulting from solvolysis of 1 were 
completely removed by three extractions with ethyl acetate. 
Precipitation of the polymer with ethanol followed by further 
extraction of aqueous solutions of the precipitate failed to re­
lease any of the bound hydrocarbon. Examination of the extent 
of binding as a function of pH and time established that opti­
mum modification (10%) occurred near pH 6 and was com­
plete within 1 h. The rate of binding was at least 30 times faster 
at pH 4 compared to pH 7, which required 2 h to reach com­
pletion. The uv spectrum of the modified poly G (Figure 1) 
showed the characteristic pyrene absorption pattern near 340 
nm with a bathochromic shift which is typical of stacked 
chromophores." 

Acid hydrolysis of the modified poly G in 180-enriched 
(18%) 0.1 N HCl at 100 0 C for 1 h released essentially all of 
the hydrocarbon as tetraols of 1 which had incorporated 0.96 
atom % solvent water. The experiment provides little structural 
information since the tetraols incorporate 0.86 atom % solvent 
water under these conditions. Two classes of polymer-adducts 
were, however, identified by their differences in chemical 
stability. The minor and chemically labile products (type I 
adducts), 10-15% of the bound hydrocarbon, were released 
as tetraols with 0.95 atom % incorporation of solvent water on 
heating of modified polymer at 85 0 C for 15 min at pH 7.0, 
conditions under which tetraols do not exchange.12 Alkaline 
hydrolysis of the modified polymer (1 N KOH, 24 h, 37 0C) 
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Figure 1. Ultraviolet spectra of poly G (water), poly G-diol epoxide 1 
(water), and diol epoxide 1 (dry tetrahydrofuran); e343 ~55 000 for diol 
epoxide 1 and «254 —10 000 for poly G. Spectra are not corrected for dif­
ferences in intensities. 

to nucleotides also releases 10-15% of the hydrocarbon as te-
traols.13 Alkaline phosphatase (10 units/35 OD254nm, pH 8.4, 
37 0C, 24 h) hydrolyzed this nucleotide mixture to guanosine 
and two pairs of diastereomeric guanosine-hydrocarbon ad­
ducts as established by their circular dichroism spectra14 (type 
II adducts). The type I and II adducts account for >95% of the 
binding of 1 to poly G. 

The chemical lability and incorporation of solvent water of 
the type I adducts suggest alkylation of the phosphodiester 
linkages of the poly G to initially produce labile phospho-
triesters.15 When tritiated 1 (0.4 mg/ml) was mixed with 0.05 
M phosphate buffer at pH 7, > 15% of the hydrocarbon became 
nonextractable into ethyl acetate, presumably due to alkylation 
of phosphate. After heating the "hydrocarbon-phosphate" 
adduct (pH 7, 85 0C, 30 min), >99% of the hydrocarbon be­
came extractable as tetraols. 

The two pairs of diastereoisomeric nucleoside type II ad­
ducts arise from cis and trans addition of the amino group at 
C-2 of the guanine base to the 10-position of 1. The usual cri­
terion for assignment of position of alkylation on guanine, pH 
dependence of the uv spectrum,9 cannot be applied because the 
hydrocarbon residue greatly dominates the spectrum. Alkyl­
ation of [8-3H]poly G at N-7 or C-8 by 1 was excluded by a 
lack of tritium release (no tritium release above the blank of 
0.5% with 10% modification) under conditions where complete 
exchange would be expected.1617 Isolated nucleoside adducts 
from the modified polymer had >80% of the original specific 
activity. Alkylation at 0-6, N-I, or N-3 would lead to products 
which lack the normal acidic (pA'a = 9.2) proton at N-I.9 The 
pKa of the mixture of nucleoside adducts was readily estimated 
from the change in partition coefficient for the adducts between 
aqueous and organic solvent as a function of pH (Figure 2). 
Since both acidic and basic ionizations of the type II adducts 
were observed, alkylation at 0-6, N-I, or N-3 can be elmi-
nated. The presence of a substituent at N-2 was directly indi­
cated by the failure of the type II adducts to change pATa on 
treatment with nitrous acid (30% acetic acid, pH 3.5,2 h at 37 
0C), conditions which deaminate guanosine at N-2 and cause 
the pKa to change to 5.718-19 
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Figure 2. Estimation of pATa via change in partition coefficient. Type II 
adducts (~15 nmol) were partitioned between equal volumes (0.4 ml) of 
0.05 M buffers (except pH points 1 -3 where phosphoric acid was added 
to obtain correct pH) and 20% 1-butanol in ethyl acetate. Distribution 
between the two phases was determined spectrophotometrically (/I344) 
and radiochemically. 

Since NMR spectra of the acetylated type II adducts were 
somewhat complicated due to the overlap of signals in the 5-6 
ppm region, a ribose-free derivative of the type II adducts was 
sought. Methylation at N-7 of the modified polymer (or mix­
ture of nucleoside adducts) with four aliquots of dimethyl 
sulfate at 30-min intervals (pH 7, 25 0C), followed by brief 
heating (pH 6, 100 0C), cleaved the hydrocarbon-7-methyl-
guanine from the ribose. After acetylation and purification, 
two main products were isolated20 which had mass spectra 
indicative of 7-methylguanyltriacetoxytetrahydrobenzo[fl]-
pyrene adducts 4.21 The major and minor adducts were as­
signed as trans (4a) and cis (4b) addition products, respec­
tively, to the C-10 position of the epoxide in 1 based on com­
parison of their NMR spectra with model compounds.22 

AcO 

AcO-' 

OAc 4 a 9,10-trans adduct 
b 9,10-cis adduct 

The reaction of 1 with poly G is unique in that selective al­
kylation occurs at two sites which rarely suffer extensive 
modification by other alkylating agents.9'23 Furthermore, the 
extent of alkylation exceeds that typically observed for arene 
oxides (cf. ref24). Alkylation of guanine bases in DNA at N-2 
and alkylation of the ribose-phosphate backbone25 with sub­
sequent implied strand breaks is unusual for alkylating agents 
and may be responsible for the high mutagenic and potentially 
carcinogenic activity of diol epoxide 1. The release of tritiated 
adducts at the N-2 position of guanine in DNA by [14C] di-
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methyl sulfate should provide a highly sensitive technique for 
detection of this type of alkylation of DNA. 

Note Added in Proof. Since submission of this manuscript, 
Professor K. Nakanishi of Columbia University kindly pro­
vided us with preprints of studies on the binding of the isomeric 
9a,10a-epoxide (2) to poly G: I. B. Weinstein, A. M. Jeffrey, 
K. W. Jennette, S. H. Blobstein, R. G. Harvey, H. Kasai, and 
K. Nakanishi, Science, 193, 592 (1976), and A. M. Jeffrey, 
K. W. Jennette, S. H. Blobstein, I. B. Weinstein, F. A. Beland, 
R. G. Harvey, H. Kasai, I. Miura, and K. Nakanishi, J. Am. 
Chem. Soc, 98, 5714 (1976). These studies showed that the 
2-amino group of quanine adds to 2 to form a trans adduct as 
well as other unidentified products. In our hands, diol epoxide 
2 behaves much like diol epoxide 1 in that alkylation of phos­
phate also occurs with this diastereomer of BP 7,8-diol-
9,10-epoxide. In addition, A. M. Jeffrey, S. H. Blobstein, I. B. 
Weinstein, F. A. Beland, R. G. Harvey, H. Kasai, and K. 
Nakanishi,.Prac. Natl. Acad. Sci., U.S.A., 73,2311 (1976), have 
shown that DMBA 5,6-oxide alkylates the N-2 amino group 
of quanine in poly G. 
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A Total Synthesis of d,/-Luciduline by a 
Regioselective Intramolecular Addition of an 
JV-Alkenylnitrone 
Sir: 

Although several studies have been made of intramolecular 
thermal additions of C-alkenylnitrones1 the corresponding 
reaction of JV-alkenylnitrones has received only scant atten­
tion.2 We now wish to report an application of the unexplored 
thermal reaction of an 7V-alkenylhydroxylamine, A, with an 
aldehyde (Scheme I)3 to afford a simple total synthesis of ra-
cemic luciduline (9). The natural rf-alkaloid, isolated from 
Lycopodium lucidulum, has been shown by chemical and 
x-ray evidence4 to have structure 9. Its racemate was synthe­
sized recently by a multistep approach involving an internal 
Mannich reaction.5 

Scheme I 
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